Tom Soh at the University of California, Santa Barbara, and colleagues used micro-magnetic separation (MMS) to standardise the washing step in phage display, a method used to find proteins that interact strongly with disease-causing molecules, such as certain enzymes.

The process requires a lot of the target molecule, explains Soh, which is problematic when it is in limited supply. It also yields false positives when proteins bind to the target's solid support rather than the target itself. 'It is also challenging to control accurately the stringency of washing in a reproducible way,' Soh adds - using a faster or longer wash flow can strip off bound phages from the target.
Soh's MMS device consists of a glass channel with nickel patterns on its surface. Soh coated magnetic beads with a target molecule then mixed the beads with a phage library in the channel. He left the mixture for 30 minutes, during which time some of the phages bound to the beads. When he applied a magnetic field to the channel, the beads stuck to the nickel and were held firmly in place while the unbound phages were washed away. He then removed the magnetic field, eluting the phage-carrying beads. Soh explains that he can alter the flow rate through the channel to maximise the quantity and diversity of the protein yield.
'MMS readily lends itself to incorporation into an automated system and provides a foundation for rapid and directed phage display,' Soh concludes.
No comments:
Post a Comment